Respiratory Failure

Department of Internal medicine
Division of Pneumology and Allergology

Chesov Dumitru, MD, PhD
Assistant Professor

Definition

Respiratory failure syndrome

Inability (failure) of lung to ensure the gas exchange between air and blood.

 $PaO_2 < 60 \text{ mmHg or } PaCO_2 > 45 \text{ mmHg}$

Pathogenesis

Classification of RF

Type of disturbance of gas exchange

Type 1

- Hypoxemic RF
- PaO2 < 60 mmHg
- normal or ↓ PaCO2

Type 2

- Hypercapnic RF
- PaCO2 > 50 mmHg
- Hypoxemia is common

Classification of RF

Speed of development

Acute RF

- Develops over minutes to hours
- \downarrow pH quickly to <7.2

Chronic RF

- Develops over days
- ↑ in HCO3
- ↓ pH slightly

Classification of RF

Severity of Hipoxemia

•	Grade I	PaO2 60-79 mm Hg;	$SaO2 \ge 90-94\%$
---	---------	--------------------------	--------------------

- **Grade II** PaO2 40-59 mm Hg; SaO2 \geq 75-89%
- **Grade III** PaO2 < **40** mm Hg; SaO2 < **75%**

Clinical assessment of RF

- History
- Physical exam
 - cyanosis, dyspnea, conscience impairment
 - compensatory CV signs,
 - manifestations of cor pulmonale (acute or chronic)

• Test: Rx, HRCT, ECG, EcoCG, Spirometry, DLCO, etc.

- SaO2 assessment
 - SaO2< 90-92%
- Gas exchange assessment
 - PaO2, PaCO2
- Assessment of acid base and electrolytes disturbances
 - pH, HCO3-, Na+, Cl-
- Assesment of complications

- SaO2 assessment
 - SaO2< 90-92%
- Gas exchange assessment
 - PaO2, PaCO2
- Assessment of acid base and electrolytes disturbances
 - pH, HCO3-, Na+, Cl-
- Assesment of complications

Case 1 PaO2 = 70 mm Hg; PaCO2 = 60 mm Hg

Case 2 PaO2 = 69 mm Hg; PaCO2 = 40 mm Hg

Case 3 PaO2 = 50 mm Hg; PaCO2 = 20 mm Hg

Case 4 PaO2 = 50 mm Hg; PaCO2 = 50 mm Hg

Case 5 PaO2 = 48 mm Hg; PaCO2 = 42 mm Hg

Alveolar-arterial oxygen gradient

•
$$P_{A-aO_2} = [(P_B - P_{H_2O}) * Fi_{O_2} - P_{aCO_2}/R] - P_aO_2$$

- P_B barometric pressure
- P_{H₂O} Partial pressure of H₂O vapors
- Fi_{O₂} Fraction of O₂ în inhaled air
- R- respiratory coeficient (≈ 0,8)

```
"130" rule
```

$$PaO_2+PaCO_2=130$$
 (FiO₂=0,21; at see level)

$$P_{A-aO_2} = 130 - (PaO2 + PaCO2)$$

Normal value
$$P_{A-aO_2}$$
 < 15 mmHg
< 20 mmHg (old person)

Case 1 PaO2 = 70 mm Hg; PaCO2 = 60 mm Hg

Case 2 PaO2 = 69 mm Hg; PaCO2 = 40 mm Hg

Case 3 PaO2 = 50 mm Hg; PaCO2 = 20 mm Hg

Case 4 PaO2 = 50 mm Hg; PaCO2 = 50 mm Hg

Case 5 PaO2 = 48 mm Hg; PaCO2 = 42 mm Hg

Comparing of ABG obtained at different FiO₂

PaO₂/FiO₂

• $PaO_2/FiO_2 < 200 \rightarrow ARDS$

- SaO2 assessment
 - SaO2< 90-92%
- Gas exchange assessment
 - PaO2, PaCO2
- Assessment of acid base and electrolytes disturbances
 - pH, HCO3-, Na+, Cl-
- Assessment of complications

Normal values

- pH 7,35-7,45
- PaO_2 >80 mmHg
- PaCO₂ 35-45 mmHg
- HCO₃ 22-28 mmol/1

71 years old male – clinical case

- pH 7.25
- CO₂ 31
- HCO₃ 13
- P_aO₂ 62
- SpO2 91% la 4L O₂
- Na+ 143 K- 4.2 Cl- 113

1. Assess pH

pH < 7.35

pH > 7.45

pH normal

• pH 7.25

• CO₂ 31

• HCO₃- 13

• P_aO_2 62

SpO2 91% la 4L O₂

Na+ 143 K- 4.2 Cl- 113

2. Assess PaCO2, HCO3-

- If PaCO2 is changed in direction of pH-ului DEAB than ABD is respiratory
- If HCO3- is changed in direction of pH-ului DEAB than ABD is metabolic

- pH 7.25
- CO₂ 31
- HCO₃ 13
- P_aO_2 62
- SpO2 91% la 4L O₂
- Na+ 143 K- 4.2 Cl- 113

Evaluarea DEAB

5. If Metabolic acidosis assess Anion gap

Anion gap =
$$[Na] - ([Cl-] + [HCO3-])$$

- GA > 16
 Ketoacidosis, Uremia,
 Lactic acidosis, Toxins
- GA normal, diarrhea, RTA

- pH 7.25
- CO₂ 31
- HCO₃ 13
- P_aO₂ 62
- SpO2 91% la 4L O₂
- Na+ 143 K- 4.2 Cl- 113

- SaO2 assessment
 - SaO2< 90-92%
- Gas exchange assessment
 - PaO2, PaCO2
- Assessment of acid base and electrolytes disturbances
 - pH, HCO3-, Na+, Cl-
- Assessment of complications

RF complications acute/chronic

- Pulmonary hypertension
- Cor pulmonale
- Polycythemia
- Cachexia
- Respiratory muscle dysfunction
- Death by RF

RF Management

- Treatment of the cause
 - Bronchial permeability Bronchodilators (β-agonists, Xantines, GCS)
 - Infection control- antibiotics
 - Right heart failure diuretics
- Removing and prevenion of hypoxemia
- Control of PaCO₂ and respiratory acidosis
- Monitoring and treatment of CV and CNS manifestations

Removing of Hypoxemia

P_aCO₂ Control

- Increasement of FiO2 (Oxigenotherapy)
 - Lower V/Q less efficientO2-therapy

- Recruitment of ventilatory space
 - CPAP, NIV (BIPAP), IMV

- Augmentation of minute volume (assisted ventilation- V, P,FR)
 - Noninvasive ventilation with negative pressure
 - Noninvasive ventilation with positive pressure (NIV)
 - Invasive ventilation with positive pressure (IMV)

No PEEP applied. 8cm H₂O of auto-PEEP

Figure 2A Effect of auto-PEEP on work of breathing (WOB). In the presence of airflow obstruction the alveoli remain inflated at end expiration. This results in alveolar pres-

+6 cm H₂O of extrinsic PEEP. 8 cm₂ HO of auto-PEEP

Oxygen-therapy in Acute respiratory failure or Acute on chronic

O₂ în acute RF

All hypoxemic patients

Oxygen is a treatment for hypoxemia not for breathless

- SaO₂ target 94-98%,
 (simple mask, cannula, in critical patients reservoir mask)
- Risk for hypercapnia SaO2 target 88-92%, (Ventrui mask 28%)
 - Excepting critical patients,
 - Excepting prior episodes of IR tip II, NIV, IPPV
- Assess ABG
- If hypercapnia or acidosis ventilatory support
- Assess ABG after 30-60 min
- Reduced O₂ in stable patients with satisfactory SaO₂

Patients at risk for hypercapnia

- COPD
- Exacerbation of cystic fibrosis
- Chronic neuromuscular diseases
- Diseases of chest wall or spine
- Morbid obesity

Oxygen-therapy in Chronic RF

Long term oxygentherapty

- 10-12h at night-for paradoxical sleep dessaturation
- Daily after meals up to 15h
- Use exercise
- Improvement: exercise tolerance, life expectancy, intellectual performance

British Medical Research Council Domiciliary (BMRCD)

Indications for LOT

At rest

- PaO₂ <55 mmHg or SaO₂ < 88%
- PaO₂ 56-59 mmHg or SaO₂ - 89% şi
 - Right heart failure
 - Hronic cor pulmonale
 - Polycitemia (Ht > 56%)

At rest

• $PaO_2 > 59\%$ mmHg or $SaO_2 > 89\%$

BUT

- During sleep
 - SaO₂ < 90%, for 30% of the entire duration of sleep (improved by O2)
- At exertion
 - SaO₂ < 90%, during 6MWT,
 (improved by O2)

CPAP in acute RF

- Acute Pulmonary Edema
- Decompensated obstructive sleep apnoea
- Patients with chest wall trauma who remain hypoxic despite adequate regional anaesthesia and high flow oxygen (only in ICU)
- CAP who remain hypoxic despite maximum medical treatment oxygen (only in ICU)

NIV Acute RF

Patients

- COPD
- Chest wall deformity, neuromuscular disorder,
- Decompensated OSA
- Cardiogenic pulmonary oedema, unresponsive to CPAP

Blood gases

- Respiratory acidosis (pH<7,35; PaCO2>35 mm Hg) which persists despite maximal medical treatment and appropriate controlled oxygen therapy
- patients with pH <7.25 respond less well and should be managed in an HDU/ICU).
- Low A±a oxygen gradient (patients)

Clinical state

Sick but not moribund

- · Able to protect airway
- · Conscious and cooperative
- · Haemodynamically stable
- · No excessive respiratory secretions
- · Few co-morbidities

Contraindications excluded

- Facial burns/trauma/recent facial or upper airway surgery
- Vomiting
- · Fixed upper airway obstruction
- · Undrained pneumothorax

No efficacy after 1-2 hours \rightarrow intubation

managed by tracheal intubation)

Indication for IMV

- Respiratory failure
 - pH: <7.25
 - $PaCO_2$: >50 mmHg
 - PaO₂: <50mmHg
- Fixed upper airway obstruction (also potential)
- Inefficient respiratory movement
- Impaired conscience

Extracorporeal Membrane Oxygenation ECMO

NIV in chronic RF

- Hypercapnic respiratory failure secondary to:
 - Spinal cord lesion
 - Neuromuscular diseases
 - Chest wall deformity (e.g. scoliosis, thoracoplasty)
 - Morbid obesity (BMI >30)

COPD with:

- Recurrent AHRF (>3 episodes) requiring treatment with NIV
- Intolerance of supplementary oxygen (because of CO2 retention) with symptomatic sleep disturbance
- Failure to wean from NIV

Pulmonary transplant

Unipulmonar Bipulmonar Cardiopulmonar

Supravieţuirea posttransplant

Thank you